AerMet® 100 - AMS 6532

AerMet® 100 is an ultra-high strength type of martensitic (a

very hard form of steel crystalline structure) steel alloy.

Is was developed in response to a need for a stronger and tougher material with superior fracture toughness and ductility. The alloy possesses a minimum tensile strength of 280 ksi (1930 MPa) and a minimum fracture toughness of 100 Ksi/in. AerMet is weldable requiring no preheating. Since it is not a corrosion resistant alloy, it must be sealed if used in a moist environment. The exceptional properties of hardness, FTT, tensile strength and ductility make this alloy a candidate for application such as landing gear, armor, fasteners, actuators, ordnance, jet engine shafts, drive shafts and structural tubing. AerMet 100 may be considered for use up to about 800° F (427° C).

Chemical Composition:			
Symbol	Element	Nominal %	
С	Carbon	0.23	
Со	Cobalt	13.40	
Cr	Chromium	3.10	
Ni	Nickel	11.10	
Мо	Molybdenum	1.20	
Ti	Titanium	.05 max	
Fe	Iron	Balance	

Physical Properties:			
Property			
Density, lb /in3	.285		
Modulus of Elasticity	28.2 x 103 ksi		
Electrical Resistivity	70.0° F	259.0 ohm-cir-mil/ft	
Critical Temperature	AC1 - 1065° F	AC3 - 1525° F	
Mean Co of Thermal Expansion	Annealed	Heat Treated	
600.0° F	6.01 x 10-6 in/in/° F	6.08 x 10-6 in/in/° F	

Excellent Mechanical Properties

- hardness and strength
- exceptional ductility and toughness

- high fracture toughness
- excellent fatigue and stress corrosion cracking resistance
- high fatigue strength

Excellent Workability

- · good weldability requiring no preheating
- excellent polishability
- · readily formed

Advantages During Application

- · highest combination of strength and toughness vs other steels
- · designed for overstressed application

Common Specifications:

- · AMS 6532
- · MIL HDBK-5
- McDonnell Douglas MMS 217

Decarburization

Like other carbon bearing high strength alloys, AerMet 100 alloy is subject to decarburization during hardening. Heat treatment should take place in a neutral atmosphere furnace, salt bath or vacuum. Decarburization should be determined by comparing the surface and internal hardness of a small test cube for proper response. Metallographic determination of decarburization is not recommended for this alloy.

Normalizing

AerMet 100 alloy can be normalized by heating to 1650° F (899° C) holding for one hour and air cooling to room temperature. Optimum softening for machining is obtained by following the 1650° F (899° C) normalize with a 16 hour 1250° F (677° C) overage anneal.

Annealing

AerMet 100 alloy is softened by using a 1250° F (677° C) overage anneal for 16 hours. The optimum annealed hardness of 40 HRC maximum is obtained following this anneal.

Solution Treatment

The solution treatment temperature range is 1625° F+/-25° F (885° C +/-14° C) for 1 hour. The solution treatment temperature must be monitored by a thermocouple attached to the load.

Quenching

Water quenching is not recommended. Proper quenching practice is essential for AerMet 100 alloy. The alloy should be cooled from the solution treatment temperature to 150° F (66° C) in 1 to 2 hours to develop optimum properties. Individual sections larger than 2" diameter to 1" thick (plate) must be quenched with oil in order to obtain 150° F (66° C) in 1 to 2 hours. Individual sections up to 2" diameter or 1" thick (plate) will air cool to 150° F (66° C) in 1 to 2 hours. The cooling rate of

FUSHUN METAL

the furnace load must be monitored by a thermocouple attached to the hottest spot in the load to insure that the 2 hour cool to 150° F (66° C) is obtained.

Cold Treatment

Following cooling to room temperature, to obtain the full toughness capability AerMet 100 alloy should be cooled to -100° F (-73° C) and held for 1 hour. The parts can then be air warmed.

Straightening

AerMet 100 alloy exhibits minimal size change during heat treatment; however, for some parts, mechanical straightening to compensate for distortion during heat treatment is appropriate. Prior to straightening, a low temperature stress relief at $350/400^{\circ}$ F ($482/204^{\circ}$ C) for 5 hours following the refrigeration operation will provide an optimal combination of ductility and yield strength for the mechanical straightening operation.

Age

The standard aging treatment for AerMet 100 alloy is 900° F +/- 10° F (482° C +/- 6° C) for 5 hours. Parts made from AerMet 100 alloy should never be aged at a temperature below 875° (468° C).

Aging Temperature	HRC
As hardened	51.0/53.0
875° F (468° C) 5 hrs	54.5/55.5
900° F (482° C) 5 hrs	53.0/54.0
925° F (496° C) 5 hrs	51.0/52.5

AerMet is a registered trademark of CRS Holdings, Inc., a subsidiary of Carpenter Technology Corporation.